Deglycosylation of the beta1-subunit of the BK channel changes its biophysical properties.

نویسندگان

  • Brian M Hagen
  • Kenton M Sanders
چکیده

Large-conductance Ca(2+)-activated potassium (BK) channels are composed of pore-forming alpha-subunits and auxiliary beta-subunits. The alpha-subunits are widely expressed in many cell types, whereas the beta-subunits are more tissue specific and influence diverse aspects of channel function. In the current study, we identified the presence of the smooth muscle-specific beta1-subunit in murine colonic tissue using Western blotting. The native beta1-subunits migrated in SDS-PAGE as two molecular mass bands. Enzymatic removal of N-linked glycosylations from the beta1-subunit resulted in a single band that migrated at a lower molecular mass than the native beta1-subunit bands, suggesting that the native beta1-subunit exists in either a core glycosylated or highly glycosylated form. We investigated the functional consequence of deglycosylating the beta1-subunit during inside-out single-channel recordings. During inside-out single-channel recordings, with N-glycosidase F in the pipette solution, the open probability (P(o)) and mean open time of BK channels increased in a time-dependent manner. Deglycosylation of BK channels did not affect the conductance but shifted the steady-state voltage of activation toward more positive potentials without affecting slope when Ca(2+) concentration was <1 microM. Treatment of myocytes lacking the beta1-subunits of the BK channel with N-glycosidase F had no effect. These data suggest that glycosylations on the beta1-subunit in smooth muscle cells can modify the biophysical properties of BK channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Effects of β1 and β2 Subunits on BK Channel Activity

High conductance, calcium- and voltage-activated potassium (BK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (beta) subunits. beta1 and beta2 subunits increase apparent channel calcium sensitivity. The beta1 subunit also decreases the voltage sensitivity of the channel and the beta2 subunit...

متن کامل

Subunit-specific effect of the voltage sensor domain on Ca2+ sensitivity of BK channels.

Large conductance Ca(2+)- and voltage-activated K(+) (BK) channels, composed of pore-forming alpha-subunits and auxiliary beta-subunits, play important roles in diverse physiological processes. The differences in BK channel phenotypes are primarily due to the tissue-specific expression of beta-subunits (beta1-beta4) that modulate channel function differently. Yet, the molecular basis of the sub...

متن کامل

Structural Determinants for Functional Coupling Between the β and α Subunits in the Ca2+-activated K+ (BK) Channel

High conductance, calcium- and voltage-activated potassium (BK, MaxiK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (beta) subunits. The most remarkable effects of beta1 and beta2 subunits are an increase of the calcium sensitivity and the slow down of channel kinetics. However, the detaile...

متن کامل

Biophysical and electropharmacological properties of single mitoKATP channel in rat brain mitochondrial inner membrane

Introduction: Different ATP-sensitive potassium channels have been detected in the mitochondrial inner membrane of cells. They are suggested to be involved in cell processes including cell protection. Here, we characterized the biophysical and electropharmacological properties of a KATP channel in the brain mitochondrial inner membranes. Methods: After removing and homogenizing the rat brain...

متن کامل

Beta1-subunit of the Ca2+-activated K+ channel regulates contractile activity of mouse urinary bladder smooth muscle.

1. The large-conductance calcium-activated potassium (BK) channel plays an important role in controlling membrane potential and contractility of urinary bladder smooth muscle (UBSM). These channels are composed of a pore-forming alpha-subunit and an accessory, smooth muscle-specific, beta1-subunit. 2. Our aim was to determine the functional role of the beta1-subunit of the BK channel in control...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 291 4  شماره 

صفحات  -

تاریخ انتشار 2006